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Abstract

Hillslope response has traditionally been studied by means of the hydraulic groundwater theory. Subsurface flow from a one-

dimensional hillslope with a sloping aquifer can be described by the Boussinesq equation [Mem. Acad. Sci. Inst. Fr. 23 (1) (1877)

252–260]. Analytical solutions to Boussinesq’s equation are very useful to understand the dynamics of subsurface flow processes

along a hillslope. In order to extend our understanding of hillslope functioning, however, simple models that nonetheless account for

the three-dimensional soil mantle in which the flow processes take place are needed. This three-dimensional soil mantle can be

described by its plan shape and by the profile curvatures of terrain and bedrock. This plan shape and profile curvature are dominant

topographic controls on flow processes along hillslopes. Fan and Bras [Water Resour. Res. 34 (4) (1998) 921–927] proposed a

method to map the three-dimensional soil mantle into a one-dimensional storage capacity function. Continuity and a kinematic

form of Darcy’s law lead to quasi-linear wave equations for subsurface flow solvable with the method of characteristics. Adopting a

power function of the form proposed by Stefano et al. [Water Resour. Res. 36 (2) (2000) 607–617] to describe the bedrock slope, we

derive more general solutions to the hillslope-storage kinematic wave equation for subsurface flow, applicable to a wide range of

complex hillslopes. Characteristic drainage response functions for nine distinct hillslope types are computed. These nine hillslope

types are obtained by combining three plan curvatures (converging, uniform, diverging) with three bedrock profile curvatures

(concave, straight, convex). We demonstrate that these nine hillslopes show quite different dynamic behaviour during free drainage

and rainfall recharge events.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A river basin is made up of interconnected hillslopes
and the channel network which drains these hillslopes.
Both hillslopes and channels transport water to the
outlet of the basin. To understand the hydrological
processes at the catchment scale is to understand the
characteristic response of the hillslopes and the channel
network within the catchment. Several researchers have
focused attention on modeling the dynamic response of
the channel network, by accounting for network geom-
etry [4–6]. The rationale behind this is that both network
topology and geomorphology are essential to define the

channels’ response to a given volume of surface runoff
or lateral inflow.
Hillslope response has traditionally been studied by

means of hydraulic groundwater theory. Subsurface
flow from a one-dimensional hillslope with a sloping
aquifer can be described by the Boussinesq equation (1):
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where hðx0; tÞ (Fig. 1) is the elevation of the groundwater
table measured perpendicular to the underlying imper-
meable layer which has a slope angle i, k is the hydraulic
conductivity, f is drainable porosity, x0 is distance from
the stream and measured parallel to the impermeable
layer, and t is time. We refer to [7,8] for a general dis-
cussion of the Boussinesq equation. No general analyt-
ical solutions of (1) exist. For horizontal bedrock [9,10]
derived exact solutions to (1). When i can be assumed
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large, the kinematic wave approach becomes applicable
[1,11,12]. In this approximation the second-order diffu-
sive term in (1) disappears, rendering the analytical so-
lution inappropriate for small to intermediate slopes.
Examples of kinematic wave modeling of subsurface
flow along unit width hillslopes for catchment scale
applications can be found in [2,13–15]. Solutions of (1)
for small to intermediate slopes have been obtained
through linearization [16–19].
These analytical solutions are very useful to under-

stand the dynamics of subsurface flow processes along a
hillslope. There is however a need to derive equally
simple models and corresponding analyical solutions
that account for the three-dimensional soil mantle in
which these flow processes take place [20]. This three-
dimensional soil mantle can be described by its plan and
profile curvature. The plan and profile curvature are the
dominant topographic controls on flow processes along
hillslopes [21–26]. Essentially, three plan curvatures are
encountered in nature: convergent, where slope width
increases with distance from the channel; divergent,
where slope width decreases with distance; and uniform,
where slope width remains more or less constant. Simi-
larly, for profile curvature we can distinguish essentially
three types: concave, where slope increases with dis-
tance; convex, where slope decreases with distance; and
plane, where the slope is more or less constant. Com-
bination of the three plan and the three profile curva-
tures results in nine distinct hillslope types which may
show different dynamic response to storm rainfall. In
this paper, we derive the characteristic drainage re-
sponse functions of these hydrological units under the
assumption of kinematic wave subsurface flow, based
on a more general analytical solution to the hillslope-
storage dynamic equations. The response functions can
be extended to include saturation overland flow (in-
cluding the extent of saturation).
Section 2 describes how the three-dimensional soil

mantle can be collapsed into a one-dimensional storage
capacity profile. We then formulate the kinematic form
of Darcy’s equation in terms of soil storage as the
dependent variable of interest, and present analytical
solutions to these equations based on the method of

characteristics. The solution describes the storage and
the outflow as functions of time and distance from the
divide. We also derive the steady-state solution for a
given recharge rate by allowing time to approach infinity.
Section 3 compares the characteristic response func-

tions for nine hillslope types. First, we describe in detail
how the different hillslope types used in this study are
generated. Then we compute the impulse response
functions of subsurface storm flow for these hillslopes. It
is found that the nine hillslope types show quite distinct
hydrologic behaviour. Next, we compute subsurface
storm flow and the corresponding degree of saturation
from below during a constant finite duration rainfall
recharge event. We illustrate how the proposed model
allows the computation of variable source areas induced
by topographic controls in a catchment.
Finally, Section 4 summarizes the main results of the

paper and discusses some limitations and possible
extensions of the approach presented in this paper.

2. Formulation of the hillslope-storage kinematic wave

model

2.1. One-dimensional soil moisture storage dynamics

Consider a hillslope with a three-dimensional soil
mantle on top of an impermeable layer with given pro-
file curvature (Fig. 2). Flow processes in and over this
hillslope will be influenced by its plan and profile cur-
vature, and the hydraulic properties of the porous
medium and the surface. The mathematical description
of these flow processes results in the formulation of the
three-dimensional Richards equation [24,27]. Solving
the three-dimensional Richards equation for several
hillslopes within a catchment is numerically and com-
putationally a daunting task. Fan and Bras [2] presented
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Fig. 2. Three-dimensional view of a convergent hillslope on top of a

concave bedrock profile.

Fig. 1. Definition sketch of the cross-section of a hillslope aquifer.
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a very elegant way to collapse the three-dimensional
soil mantle into a one-dimensional profile. They intro-
duced the soil moisture storage capacity function ScðxÞ,
defined as:

ScðxÞ ¼ wðxÞdðxÞf ; ð2Þ

where wðxÞ is the width of the hillslope at flow distance x
from the divide (the so-called hillslope width function),
dðxÞ is the averaged soil depth at flow distance x, and f is
drainable porosity (see also Fig. 2 for a graphical defi-
nition of the width and soil depth function). Eq. (2)
defines the thickness of the pore space along the hillslope
and accounts for both plan curvature, through the width
function, and profile curvature, through the soil depth
function.
Let us denote with Sðx; tÞ the soil moisture storage at

a given flow distance x from the divide and at time t. We
can now reformulate the three-dimensional flow prob-
lem of Fig. 2 as a one-dimensional flow problem of Fig.
3. The soil moisture storage capacity function, ScðxÞ,
defines the vertical dimension of the hillslope and the
propagation of soil moisture storage in space and time,
Sðx; tÞ, is constrained by the continuity equation and
Darcy’s law. Along the hillslope the continuity equation
reads

oS
ot

þ oQ
ox

¼ NðtÞwðxÞ; ð3Þ

where NðtÞ is the recharge to the saturated layer. Clearly
we have complete saturation whenever Sðx; tÞP ScðxÞ.
Let us further assume that the flow rate Q is related to
the storage Sðx; tÞ through a kinematic form of Darcy’s
equation

Q ¼ �k
S
f
oz
ox

; ð4Þ

where z is the elevation of the bedrock above a given
datum. Combining (4) with the continuity equation for
given recharge N and assuming no spatial variability in
k and f, one obtains a quasi-linear wave equation in
terms of soil moisture storage

aðxÞ oS
ox

þ oS
ot

¼ cðx; SÞ; ð5Þ

where

aðxÞ ¼ � kz0ðxÞ
f

;

cðx; SÞ ¼ NwðxÞ þ kz00ðxÞ
f

S

and z0ðxÞ and z00ðxÞ are first and second derivatives of the
bedrock profile curvature function zðxÞ with respect to x.
Fan and Bras [2] proposed a second-order polynomial
function of the form

zðxÞ ¼ a þ bxþ cx2 ð6Þ

to describe the hydraulic gradient in the kinematic wave
approach. In the following we will use the profile cur-
vature function given by Stefano et al. [3]:

zðxÞ ¼ E þ H 1
�

� x
L

�n
; ð7Þ

where H is the elevation difference of the bedrock along
the hillslope, L is the corresponding slope length, and
the exponent n defines profile curvature. The parameter
E defines the reference datum for elevation. Note that
when E ¼ 0 this equation assumes that the reference
datum coincides with the outcrop of the bedrock near
the channel. Values of n > 1 define concave profiles,
n < 1 define convex profiles, and for n ¼ 1 the profile is
linear. Note that for n ¼ 2, (7) reduces to (6) with
a ¼ E þ H , b ¼ �2H=L, and c ¼ H=L2.

2.2. Analytical solutions using (7)

Eq. (5) is a quasi-linear wave equation that can be
solved analytically with the method of characteristics.
(5) can then be written as a set of ordinary differential
equations [2]:

dx
dt

¼ aðxÞ ¼ � kz0

f
; ð8Þ

dS
dx

¼ cðx; SÞ
aðxÞ ¼ � f

kz0
NðtÞwðxÞ � z00

z0
S ð9Þ

(8) describes a family of characteristic curves in the ðx; tÞ
plane, and (9) describes how the storage propagates
along each curve. Fig. 4 illustrates the method of char-
acteristics in the ðx; tÞ plane. In the context of subsurface
flow, it is reasonable to assume the following initial and
boundary conditions:

Sðx; 0Þ ¼ gðxÞ; 06 x6 L;

dSð0; tÞ
dx

¼ 0 8t;

where gðxÞ represents the initial soil moisture storage
along the hillslope. For subsurface flow and rainfall

Fig. 3. Definition sketch of the cross-section of a one-dimensional

hillslope-storage aquifer on top of a concave bedrock profile.
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events with constant intensity and duration T, it is rea-
sonable to assume that the subsurface flow does not
reach equilibrium at t ¼ T ; therefore, four domains can
be distinguished (partial equilibrium, see also Fig. 4; the
characteristic curve passing through the origin does not
reach x ¼ L before t ¼ T ). Domain 1 (D1) is defined by
the characteristic curve t ¼ tðx; 0Þ and the lines t ¼ 0
(initial condition), t ¼ T (end of rainfall event), and
x ¼ L (outlet of hillslope). To obtain Sðx; tÞ in D1 we
solve (8) and (9) subject to the following initial and
boundary conditions:

tðfÞ ¼ 0 06 f6L;

SðfÞ ¼ gðfÞ 06 f6 L;

where f is a parameter representing the intersection of a
characteristic curve with the x-axis. The solution in
domain D1 is then given by:

t ¼ fL2

ð2� nÞnkH ð1
h

� f=LÞ2�n � ð1� x=LÞ2�n
i
; ð10Þ

Sðx; tÞ ¼ gðfÞ 1� f=Lð Þ
1� x=Lð Þ

� �n�1

þ fL
nkH

1ð � x=LÞ1�nN AðxÞ½ � AðfÞ	; ð11Þ

where AðxÞ is the upstream drainage area at location x
(integral from 0 to x of wðxÞ). For partial equilibrium,
domain 2 (D2) is bounded by the characteristic curve
t ¼ tðx; 0Þ and the lines x ¼ 0 (boundary condition), and
t ¼ T . The following initial and boundary conditions
apply:

tð0Þ ¼ s; 06 s6 T ;

dS
dx

¼ 0; Sð0; tÞ ¼ gð0Þ;

where s is a parameter representing the intersection of a
characteristic curve with the t-axis. The solution is now
given by:

t ¼ s � fL2

ð2� nÞnkH ð1
h

� x=LÞ2�n � 1
i
; ð12Þ

Sðx; tÞ ¼ � fL
nkH

1ð � x=LÞ1�nN
L

n� 1wð0Þ
�

� AðxÞ
�
:

ð13Þ

When N is considered to be a constant recharge during
steady-state subsurface flow, (13) represents the steady-
state solution corresponding to this constant recharge
rate. Therefore (13) can be used to compute a steady-
state initial condition for domain D1, gðfÞ, assuming a
given constant recharge rate.
Eqs. (8) and (9) can be simplified for domain D31 and

D32 as:

dx
dt

¼ � kz0

f
; ð14Þ

dS
dx

¼ � z00

z0
S: ð15Þ

Domain D31 is defined by the region bounded by the
curves x ¼ 0, t ¼ T , and the characteristic curve passing
through x
. For the definition of the parameter x
 we
refer to Fig. 4. The boundary and initial conditions can
now be expressed as:

tðx
0Þ ¼ T ; 06 x
0 < x
;

Sðx
0Þ ¼ Sðx
0; T Þ;

where x
0 is a parameter representing the intersection of
the characteristic curve through s and t ¼ T . The solu-
tion can now be written as:

t ¼ T þ fL2

ð2� nÞnkH ð1
h

� x
0=LÞ
2�n � ð1� x=LÞ2�n

i
;

ð16Þ

Sðx; tÞ ¼ Sðx
0Þ
1� x
0=L
	 

1� x=Lð Þ

� �n�1
: ð17Þ

Domain D32 is defined by the region bounded by the
curves x ¼ L, t ¼ T , and the characteristic curve passing
through x
. The boundary and initial conditions are now
given by:

tðx00Þ ¼ T ; x
 6 x00 < L;

Sðx00Þ ¼ Sðx00; fÞ;
where x00 is a parameter representing the intersection of
the characteristic curve through f and t ¼ T . The solu-
tion can now be written as:

t ¼ T þ fL2

ð2� nÞnkH ð1
h

� x00=LÞ
2�n � ð1� x=LÞ2�n

i
;

ð18Þ

Sðx; tÞ ¼ Sðx00Þ
1� x00=L
	 

1� x=Lð Þ

" #n�1

: ð19Þ

Fig. 4. ðx; tÞ plane with characteristic curves and domain definition.
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The parameters x00 and f in the above equations are
further subject to the following condition:

T ¼ fL2

ð2� nÞnkH ð1
h

� f=LÞ2�n � ð1� x00=LÞ
2�n

i
: ð20Þ

An important parameter in this solution is x
. The value
of x
 is found through

x
 ¼ L 1

"
� 1

�
� ð2� nÞnkHT

fL2

�1=ð2�nÞ
#
:

2.3. Analytical solutions using (6)

Fan and Bras [2] derived analytical solutions for (5)
using (6). Their analytical solutions form a special case
to the solutions given here, for the case when n ¼ 2. One
can derive their Eq. (12) by taking the limit value of (10)
and (11) for n approaching 2. Their Eq. (13) however
was printed in error (Fan, 2000, personal communica-
tions) and should read

Sðx; 0Þ ¼
N AðxÞ þ bwð0Þ

2c

h i
�ðk=f Þðb þ 2cxÞ : ð21Þ

It is important to note at this point that the applied
boundary condition (ðdS=dxÞ ¼ 0) does not guarantee a
Dirichlet condition, resulting in the term containing
wð0Þ in (13) as well as (21). In order to prevent mass
balance errors for the hillslope, two solutions can be
adopted: (i) to assume that wð0Þ ¼ 0, and (ii) to apply a
Dirichlet condition (Sð0; tÞ ¼ 0 for all t). Both solutions
give the same results, viz. the disappearance of the terms
containing wð0Þ. The second option, however, is pre-
ferred because it does not cause incompatibilities with
the assumed plan shape of the hillslope at the divide.
Therefore, in the results presented in Section 3.2, the
second solution was adopted.

3. Characteristic drainage response functions of basic
hillslope types

3.1. Nine hillslope types

One can always approximate a certain portion of the
topographic surface of a catchment by a continuous
function. An example of such a function is the bivariate
quadratic function that was suggested by Evans [28]:

z ¼ ax2 þ by2 þ cxy þ dxþ ey þ f ; ð22Þ
where z is the elevation, x the horizontal distance in the
length direction of the area, y the horizontal distance in
the direction perpendicular to the length direction (the
width direction). The other parameters in the equation
are constants. (22) is the general equation of the conic
shape. Contour lines on surfaces described by (22) form

conic sections. Following [28], we can now characterize
hillslopes by the combined curvature in the gradient
direction (profile curvature) and the direction perpen-
dicular to the gradient (plan curvature). The profile
curvature is important because it reflects the change in
slope angle and thus controls the change of velocity of
mass flowing down along the slope curve. The plan
curvature reflects the change in aspect angle and influ-
ences the divergence or convergence of water flow. In
other words, profile and plan convexity separate cur-
vature out into two orthogonal components where the
effects of gravitational process are either maximized
(profile convexity) or minimized (plan convexity). Note
that plan curvature is usually measured in the horizontal
plane as the curvature of contours, hence its name ‘plan
curvature’ [29,30].
In Section 2, we used a polynomial function to de-

scribe the elevation as function of the distance from the
slope top (Eq. (7)). Adding a quadratic term to this
equation to describe the slope shape in the width di-
rection yields a specific form of the bivariate quadratic
function, given by (22)

zðxÞ ¼ E þ Hð1� x=LÞn þ xy2; ð23Þ

where x is a plan curvature parameter and y is the
distance from the slope centre.
Allowing profile curvature (defined by n) to assume

values less than, equal to, or greater than 1 and plan
curvature (defined by x) to assume either positive, zero
or negative values, one can define nine basic geometric
relief forms [31]. Fig. 5 illustrates nine basic hillslope
types that are formed by combining three plan and three
profile curvatures. In this study we focus on the shape of
a hillslope in the length direction, while considering the
distance (not shape) in the width direction. However, the
distance in the width direction is a direct consequence of
both profile and plan curvature, since these determine

Fig. 5. Three-dimensional view of the nine different hillslopes used in

this study. The numbers in the figure refer to Table 1.
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the location of the slope divides. The location of the
slope divides as well as some contours are shown in
Fig. 6.
The parameters for Eq. (23) are different for each of

the nine hillslopes, and listed in Table 1. In particular,
the parameter n defines the curvature in the profile di-
rection while x defines whether the hillslope will con-
verge or diverge. The horizonal length of the nine slopes
is chosen to be constant (L ¼ 100 m).
These nine hillslopes represent a wide range of hills-

lope types traditionally considered in hydrology and
geomorphology. For different hillslopes within a catch-
ment each individual hillslope type can be fitted using
the geometrical scaling parameters H, L, and n to the
observed terrain profile curvature, given known soil
depth function, and a proper choice of x to represent
the observed wðxÞ. In case the soil depth function is
unknown, the profile curvature of the terrain can be
assumed to be parallel to the bedrock, thereby assuming
constant soil depth function. The soil hydraulic pa-
rameters k and f can be obtained by means of hydro-
graph recession analysis in the case when discharge data

are available [32], or be given characteristic values for
the soil types present in the catchment.

3.2. Drainage response functions

It is interesting to compare the drainage response
functions for these nine hillslopes, as these will reflect
the topographic control on the subsurface flow pro-
cesses. We have therefore conducted the following ex-
periments. Based on the analytical solutions presented in
Section 2, we can compute Sðx; tÞ and QðL; tÞ using the
geometrical parameters listed in Table 1. The soil depth
is assumed to be constant (d ¼ 2 m). The initial condi-
tion is gðf; 0Þ ¼ kScðfÞ, where k assumes a value of
0.2 (20% of maximum storage capacity). The hydrau-
lic parameters are set to k ¼ 1 m/h and f ¼ 0:3. First,
we assume N ¼ 0, such that the resulting solution
corresponds to free drainage after initial partial satura-
tion.
Figs. 7 and 8 summarize the main results from this

experiment. Fig. 7 shows the flow rates, normalized with
respect to drainage area, as a function of time and po-

Fig. 6. Plan view of drainage divides (solid lines) and contour lines (dashed lines) of nine hillslopes. The upslope divide of each hillslope is at x ¼ 0.

Table 1

Parameters for the nine slopes used in this study

nr Profile Plan H (m) n (dimensionless) x � 10�4 (m�1) Area (m2)

1 Concave Concave 5.01 2 5 2496

2 Concave Straight 5.01 2 0 5000

3 Concave Convex 5.01 2 )5 646

4 Straight Concave 5.25 1 5 2160

5 Straight Straight 5.25 1 0 5000

6 Straight Convex 5.25 1 )5 2161

7 Convex Concave 8.16 0.31 5 1410

8 Convex Straight 8.16 0.31 0 5000

9 Convex Convex 8.16 0.31 )5 2386

The last column gives the area of the slope, i.e., the area between the divides shown in Fig. 6. Note that the numbers in the left column correspond

with the numbers in Figs. 5–13.
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sition along the different hillslopes and Fig. 8 gives the
evolution of the relative storage function at character-
istic time instances. Relative soil moisture storage is
defined as the ratio between actual storage, Sðx; tÞ, and

maximum storage capacity, ScðxÞ. It is clear that the nine
hillslopes show very distinct hydrologic behaviour. Due
to the relatively low bedrock slope near the exit, hill-
slopes 1, 2, and 3 are slowly draining. The outflow for

Fig. 7. Normalized subsurface flow rates at different locations along the nine hillslopes during free drainage (dotted line: x ¼ 25 m; dash-dotted line:
x ¼ 50 m; dashed line: x ¼ 75 m; solid line: at outlet, x ¼ 100 m).

Fig. 8. Relative soil moisture storage for characteristic time steps during free drainage (dotted line: initial time, t ¼ 0; dash-dotted line: t ¼ 5 days;
dashed line: t ¼ 10 days; solid line: t ¼ 15 days).
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hillslopes 1, 2, and 4 increases with time due to the in-
creasing soil moisture storage near the exit. The outflow
of hillslope 3 stays nearly constant for a long time as the
soil moisture storage at the outlet stays close to its initial
value before dropping. All convergent slopes (1, 4, and
7) have increasing outflow with time, again because the
soil moisture storage at the outlet increases in time. The
outflow of 7 initially decreases as the high bedrock slope
near the exit allows the storage to drop quickly, but after
some time the convergent plan shape causes a build up
of storage resulting in an increase of outflow. As ex-
pected, the outflow of hillslope 5 stays constant and the
initial storage function glides down the slope as a step
function. The soil moisture storage near the outlet for
the diverging hillslopes (3, 6, and 9) decreases with time.
The speed at which this drop in storage occurs depends
both on the plan and profile curvature. The combined
effect of gradual divergence and convex profile curvature
of hillslope 9 results in a fast decrease of storage near the
outlet and a corresponding drop of outflow rate. Be-
cause of the set-up of this experiment (free drainage and
initial uniform partial saturation) we can regard these
results as the impulse response functions of the nine
hillslopes. As discussed in [18], these impulse response
functions can now be used to construct the instanta-
neous unit hydrograph of subsurface storm flow of a
catchment.
A second experiment evaluates the drainage response

functions under a constant rainfall recharge event. At

time t ¼ 0 a rainfall recharge event with intensity N ¼ 10
mm/day starts and lasts for the whole duration of the
computations, until a steady-state is reached. This value
is chosen as it corresponds with typical design storm
characteristics used for agricultural drainage purposes.
In humid temperate climate conditions such as North-
western Europe this rainfall event has a return period of
about 1 year. Further we assume initially dry conditions
(k ¼ 0). The results of this experiment are given in Figs.
9 and 10. As expected, hillslope 5 shows the typical ramp
response function for subsurface flow rates at different
locations along the hillslope. Surprisingly, also hillslope
3 shows such a behaviour. It appears that the decrease in
bedrock slope is compensated by the increase in hillslope
width. The other diverging hillslopes (6 and 9) as well
as hillslope 8 have approximately a first-order step
response function for subsurface drainage. The other
hillslopes show exponential growth in subsurface
drainage until the steady-state condition is reached. Also
the corresponding relative storage functions for the
different hillslopes are interesting to analyse (Fig. 10).
For the rainfall recharge event chosen, only hillslopes 1,
2, and 4 will saturate near the outlet. In the figure we
have indicated by arrows the extent of the saturated
zone at steady-state. Note that saturation is defined here
whenever Sðx; tÞP ScðxÞ (value 1 on the y axis of Fig.
10). Hillslope 1 has a steady-state saturation of 30%,
14% for hillslope 2, and 11% for hillslope 4. Note that
in the case of saturation, the computation of the outflow

Fig. 9. Normalized subsurface flow rates at different locations along the nine hillslopes during a constant rainfall recharge event, N ¼ 10 mm/day
(dotted line: x ¼ 25 m; dash-dotted line: x ¼ 50 m; dashed line: x ¼ 75 m; solid line: at outlet, x ¼ 100 m).
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rate has to be modified to account for return flow. An
obvious choice for this overland flow routing problem
is the use of kinematic wave routing [2].

3.3. Dimensional analysis

The results presented in Section 3.2 represent the
characteristic response functions for a specific set of
hillslopes with given hydraulic and geometric properties.
In order to illustrate the general character of these re-
sponse functions we have executed the following di-
mensional analysis. By defining dimensionless variables
we are able to plot the results of our model for a wide
range of hillslopes with varying length, maximum stor-
age capacity, average slope angle, and hydraulic con-
ductivity. Moreover, the recharge response under
different steady-state rainfall intensities can be included
in these plots. We therefore define the following di-
mensionless variables:

s ¼ tki
L
;

v ¼ x
L
;

/ ¼ Q
NA

;

r ¼ Sk
ScN

:

The variable s defines the kinematic time [33], where i is
average bedrock slope angle v defines the dimensionless
flow distance, whereas / and r are our new flow vari-
ables. Note that the definition of / and r needs to be
modified slightly under free drainage (zero recharge N):
in that case the relative flow variable is computed as the
ratio between cumulative outflow and initial storage
volume and the relative storage variable is defined as
the ratio between actual storage and maximum storage
capacity. Fig. 11 plots dimensionless outflow, corre-
sponding with N ¼ 0, 5, 10 and 20 mm/day, against
kinematic time where k ¼ 0:5; 1 and 2 m/h. As we can
see, all lines collapse to one, which represents the
characteristic response function for outflow for the nine
distinct hillslopes under study. These functions do not
differ from the case study presented in Section 3.2
(Fig. 9), which illustrates once again the general char-
acter of the response functions derived from our
analytical solutions. Figs. 12 and 13 show the dimen-
sionless storage as function of dimensionless flow dis-
tance for the case of free drainage (N ¼ 0 mm/day, Fig.
12) and constant recharge (N ¼ 5, 10 and 20 mm/day,
Fig. 13). Again, exactly the same shape of the storage
functions shown in Figs. 8 and 10 appear. It is note-
worthy that in order for the curves to overlap we have
plotted the corresponding dimensionless storage func-
tions at characteristic kinematic time steps (5, 10, 15
and 30).

Fig. 10. Relative soil moisture storage for characteristic time steps during a constant rainfall recharge event, N ¼ 10 mm/day (dotted line: t ¼ 5 days;
dash-dotted line: t ¼ 10 days; dashed line: t ¼ 15 days; solid line: steady-state). The arrows beneath plots 1, 2 and 4 indicate the saturated area of the
respective slopes at steady-state.
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Fig. 11. Dimensionless outflow (/) versus kinematic time (s) for the nine hillslope types for different hydraulic conductivities (k ¼ 0:5, 1, 2 m/h) and
different rainfall recharge rates (N ¼ 0, 5, 10 and 20 mm/day) – 12 combinations in total. Note that when N ¼ 0 mm/day the plotted cumulative
outflow is normalized by initial storage volume. The graphs for the 12 different rainfall recharge rates and hydraulic conductivities lay on top of each

other.

Fig. 12. Dimensionless storage (r) versus dimensionless flow distance (v) at kinematic time steps for k ¼ 0:5, 1 and 2 m/h and free drainage. The
graphs for the three different hydraulic conductivities lay on top of each other. The different lines show the change of dimensionless storage over

kinematic time (dotted line: s ¼ 5; dash-dotted line: s ¼ 10; dashed line: s ¼ 15; solid line: s ¼ 30).
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4. Summary and concluding remarks

In this paper, we have focused on the study of spatio-
temporal dynamics of flow processes in situations where
topographic relief and shallow subsurface moisture
control the storage and timing of runoff on the land-
scape. We have started our analysis from the observa-
tion that the geometry (that is shape and curvature) of
the hillslope exerts a major control on the hydrologic
storage-response, by defining the domain and boundary
conditions of moisture storage [26]. The equation that
describes flow processes in such situations, known as the
three-dimensional Richards equation, is highly complex
and requires the solution of extremely large systems of
equations even for small problems [27]. To overcome
this problem an attempt to incorporate the topographic
structure of hydrologic processes into the model for-
mulation has been presented. Our approach builds upon
the new approach to subsurface flow modeling along
hillslopes introduced by [2]. We have presented more
general analytical solutions to the hillslope-storage ki-
nematic wave equation for subsurface flow that allow
the computation of characteristic response functions for
different types of hillslopes. The hillslope-storage sub-
surface flow equation takes into account the topo-
graphic controls exerted on the flow processes by the
plan shape and profile curvature. The model has been
applied to nine distinct hillslope types which can be

viewed as a first-order approximation of the landscape
that constitutes a catchment. We have demonstrated
that these nine hillslopes show quite different dynamic
behaviour during free drainage and rainfall recharge
events. In an attempt to facilitate the interpretation of
the characteritic response functions we have produced
dimensionless plots. We show that the response func-
tions derived from our analytical solutions are indeed
characteristic for a given hillslope type. One could also
try to capture the three-dimensional shape of hillslopes
into a dimensionless representation. This would inevi-
tably lead to the collapsing of the nine subplots in Figs.
7–13 into one, representing the straight constant bed-
rock sloping hillslope. The authors are currently focus-
sing their research on this idea.
The limitations of our approach are: (1) the kinematic

wave assumption of subsurface flow, (2) the assumption
of spatially homogeneous hydraulic characteristics of
the hillslopes, (3) the assumption that capillarity effects
in the unsaturated zone above the phreatic layer can be
neglected, and (4) recharge is spatially uniform.
Because we assume that the kinematic wave approx-

imation holds, the solutions presented here are limited
to moderate to steep slopes. The lower limit of relevant
slopes is defined by the ratio of gravity drainage versus
diffusion drainage [12]. Since we have formulated the
kinematic form of Darcy’s law under the assumption of
horizontal flow lines, there exists also an upper limit to

Fig. 13. Dimensionless storage (r) versus dimensionless flow distance (v) at kinematic time steps for k ¼ 0:5, 1 and 2 m/h and N ¼ 0, 5, 10 and 20
mm/day – nine combinations in total. The graphs for the nine different hydraulic conductivities and rainfall recharge rates lay on top of each other.

The different lines show the change of dimensionless storage over kinematic time (dotted line: s ¼ 5; dash-dotted line: s ¼ 10; dashed line: s ¼ 15;
solid line: s ¼ 30). The arrow indicates the location of a saturated area for the case where k ¼ 0:5 mm/h and N ¼ 20 mm/day (r ¼ 1200 for
S=SC � 1Þ.
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the relevant bedrock slopes [7]. To overcome the limi-
tations of the kinematic wave assumption, our model
can be formulated starting from Boussinesq’s equation.
The formulation of a hillslope-storage Boussinesq
equation and its solutions form the focus of a subse-
quent paper [34].
Beven [35] summarized results from a number of field

studies on the variation of saturated hydraulic conduc-
tivity and effective porosity with depth below the sur-
face. He used exponential decay functions to describe
these dependencies. Robinson and Sivapalan [14] used
this relationship to derive analytical solutions to kine-
matic wave subsurface flow along one-dimensional
hillslopes. A similar procedure could be adopted in our
model formulation, rendering the resulting solutions
more general.
Parlange and Brutsaert [36] extended the linearized

Boussinesq equation for a horizontal aquifer by intro-
ducing a simple correction term to take capillarity effects
on subsurface flow into account. They demonstrated
that the required correction can be quite significant for
relatively short times. In situations where capillarity
effects need to be taken into account a similar procedure
could be adopted in our model formulation. The au-
thors are currently investigating the effects of a gradual
and diffuse transition zone of partly saturated material
by comparing the hillslope-storage equation with nu-
merical simulations based on the three-dimensional
Richards equation.
The model developed here assumes spatially uniform

recharge. This assumption can only be relaxed if the
dynamic equations are solved numerically, since no
general analytical solution for spatially heterogeneous
recharge is possible. Woods et al. [37] give an excellent
discussion on the effect of macropores and preferential
flow paths on the generation of subsurface flow and
saturation excess runoff. In their paper they recognize
that the portion of the rainfall that becomes subsurface
runoff will depend on soil characteristics and soil mois-
ture deficit, and both of these features may vary mark-
edly over short distances. However, as also noted by
Woods et al. [37], in an environment where subsurface
runoff dominates, it is possible that the observable to-
pographic features will control the crucial soil moisture
deficits. This renders the approach advocated here of
value to capture the main dynamics of subsurface flow
along complex hillslopes.
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