
5 Unconfined aquifers 

Figure 5.1 shows a pumped unconfined aquifer underlain by an aquiclude. The pump- 
ing causes a dewatering of the aquifer and creates a cone of depression in the water- 
table. As pumping continues, the cone expands and deepens, and the flow towards 
the well has clear vertical components. 

There are thus some basic differ$nces between unconfined and confined aquifers 
when they are pumped: 
- First, a confined aquifer is not dewatered during pumping; it remains fully saturated 

and the pumping creates a drawdown in the piezometric surface; 
- Second, the water produced by a well in a confined aquifer comes from the expansion 

of the water in the aquifer due to  a reduction of the water pressure, and from the 
compaction of the aquifer due to  increased effective stresses; 

- Third, the flow towards the well in a confined aquifer is and remains horizontal, 
provided, of course, that the well is a fully penetrating one; there are no vertical 
flow components in such an aquifer. 

In unconfined aquifers, the water levels in piezometers near the well often tend to 
decline at a slower rate than that described by the Theis equation. Time-drawdown 
curves on log-log paper therefore usually show a typical S-shape, from which we can 
recognize three distinct segments: a steep early-time segment, a flat intermediate-time 
segment, and a relatively steep late-time segment (Figure 5.2). Nowadays, the widely 
used explanation of this S-shaped time-drawdown curve is based on the concept of 
‘delayed watertable response’. Boulton (1954, 1963) was the first to introduce this 
concept, which he called ‘delayed yield’. He developed a semi-empirical solution that 
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Figure 5 .  I Cross-section of a pumped unconfined aquifer 
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Figure 5.2 Family of Neuman type curves: W(u,$) versus l / u ~  and W(U,,~) versus I/u, for different 
values of 0 

reproduced all three segments of this curve. Although useful in practice, Boulton’s 
solution has one drawback: it requires the definition of an empirical constant, known 
as the Boulton’s delay index, which is not clearly related to any physical phenomenon. 
The concept of delayed watertable response was further developed by Neuman (1972, 
1973, 1979); Streltsova (1972a and b, 1973, 1976); and Gambolati (1976). According 
to these authors, the three time segments of the curve should be understood as follows: 
- The steep early-time segment covers only a brief period after the start of pumping 

(often only the first few minutes). At early pumping times, an unconfined aquifer 
reacts in the same way as a confined aquifer: the water produced by the well is 
released instantaneously from storage by the expansion of the water and the com- 
paction of the aquifer. The shape of the early-time segment is similar to the Theis 
type curve; 

- The flat intermediate-time segment reflects the effect of the dewatering that accom- 
panies the falling watertable. The effect of the dewatering on the drawdown is com- 
parable to that of leakage: the increase of the drawdown slows down with time 
and thus deviates from the Theis curve. After a few minutes to a few hours of pump- 
ing, the time-drawdown curve may approach the horizontal; 

- The relatively steep late-time segment reflects the situations where the flow in the 
aquifer is essentially horizontal again and the time-drawdown curve once again 
tends to conform to the Theis curve. 

Section 5.1 presents Neuman’s curve-fitting method, which is based on the concept 
of delayed watertable response. Neuman’s method allows the determination of the 
horizontal and vertical hydraulic conductivities, the storativity SA, and the specific 
yield S,. 

It must be noted, however, that unreasonably low S, values are often obtained, 
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because flow in the (saturated) capillary fringe above the watertable is neglected (Van 
der Kamp 1985). 
Under favourable conditions, the early and late-time drawdown data can also be ana- 
lyzed by the methods given in Section 3.2. For example, the Theis method can be 
applied to the early-time segment of the time-drawdown curve, provided that data 
from piezometers near the well are used because the drawdown in distant piezometers 
during this period will often be too small to be measured. The storativity SA computed 
from this segment of the curve, however, cannot be used to predict long-term draw- 
downs..The late-time segment of the curve may again conform closely to the Theis 
type curve, thus enabling the late-time drawdown data to be analyzed by the Theis 
equation and yielding the transmissivity and the specific yield S, of the aquifer. The 
Theis method yields a fairly realistic value of Sy (Van der Kamp 1985). 

If a pumped-unconfined aquifer does not show phenomena of delayed watertable 
response, the time-drawdown curve only follows the late-time segment of the S-shaped 
curve. Because the flow pattern around the well is identical to that in a confined 
aquifer, the methods in Section 3.2 can be used. 

True steady-state flow cannot be reached in a pumped unconfined aquifer of infinite 
areal extent. Nevertheless, the drawdown differences will gradually diminish with time 
and will eventually become negligibly small. Under these transient steady-state condi- 
tions we can use the Thiem-Dupuit method (Section 5.2). 

The methods presented in this chapter are all based on the following assumptions 
and conditions: 
- The aquifer is unconfined; 
- The aquifer has a seemingly infinite areal extent; 
- The aquifer is homogeneous and of uniform thickness over the area influenced by 

- Prior to pumping, the watertable is horizontal over the area that will be influenced 

- The aquifer is pumped at a constant discharge rate; 
- The well penetrates the entire aquifer and thus receives water from the entire saturat- 

the test; 

by the test; 

ed thickness of the aquifer. 

In practice, the effect of flow in the unsaturated zone on the delayed watertable res- 
ponse can be neglected (Cooley and Case 1973; Kroszynski and Dagan 1975). Accord- 
ing to Bouwer and Rice (1978), air entry phenomena may influence the drawdown. 

Although the aquifer is assumed to be of uniform thickness, this condition is not 
met if the drawdown is large compared with the aquifer’s original saturated thickness. 
A corrected value for the observed drawdown s then has to be applied. Jacob (1 944) 
proposed the following correction 

S’ = s - (s2/2D) 

where 
s’ = corrected drawdown 
s = observed drawdown 
D = original saturated aquifer thickness 
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According to Neuman (1975), Jacob’s correction is strictly applicable only to the late- 
time drawdown data, which fall on the Theis curve. 

5.1 Unsteady-state flow 

5.1.1 Neuman’s curve-fitting method 

Neuman (1972) developed a theory of delayed watertable response which is based 
on well-defined physical parameters of the unconfined aquifer. Neuman treats the 
aquifer as a compressible system and the watertable as a moving material boundary. 
He recognizes the existence of vertical flow components and his general solution of 
the drawdown is a function of both the distance from the well r and the elevation 
head. When considering an average drawdown, he is able to reduce his general solution 
to one that is a function of r alone. Mathematically, Neuman simulated the delayed 
watertable response by treating the elastic storativity SA and the specific yield S, as 
constants. 
Neuman’s drawdown equation (Neuman 1975) reads 

Under early-time conditions, this equation describes the first segment of the time- 
drawdown curve (Figure 5.2) and reduces to 

where 

r2SA 
= 4KDt (5.3) 

SA = volume of water instantaneously released from storage per unit surface 

Under late-time conditions, Equation 5.1 describes the third segment of thetime-draw- 
down curve and reduces to 

area per unit decline in head (= elastic early-time storativity). 

where 

r2Sy 
= 4KDt 

S ,  = volume of water released from storage per unit surface area per unit de- 
cline of the watertable, i.e. released by dewatering of the aquifer (= spe- 
cific yield) 

Neuman’s parameter (3 is defined as 
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p = -  r2K, 
D2& 

where 
K, = hydraulic conductivity for vertical flow, in m/d 
Kh = hydraulic conductivity for horizontal flow, in m/d 

For isotropic aquifers, K, = Kh, and p = r2/D2. 

Neuman’s curve-fitting method can be used if the following assumptions and condi- 
tions are satisfied: 
- The assumptions listed at  the beginning of this chapter; 
- The aquifer is isotropic or anisotropic; 
- The flow to the well is in an unsteady state; 
- The influence of the unsaturated zone upon the drawdown in the aquifer is neglig- 

ible; 
- Sy/SA > 10; 
- An observation well screened over its entire length penetrates the full thickness of 

- The diameters of the pumped and observation wells are small, i.e. storage in them 
the aquifer; 

can be neglected. 

As stated by Rushton and Howard (1982), fully-penetrating observation wells allow 
the ‘short-circuiting’ of vertical flow. Consequently, the water levels observed in them 
will not always be equivalent to  the average of groundwater heads in a vertical section 
of the aquifer, as assumed in Neuman’s theory. The theory should still be valid, howev- 
er, for piezometers with short screened sections, provided that the drawdowns are 
averaged over the full thickness of the aquifer (Van der Kamp 1985). 

Procedure 5.1 
- Construct the family of Neuman type curves by plotting W ( U ~ , U ~ , ~ )  versus l/u, 

and l/u, for a practical range of values of p on log-log paper, using Annex 5.1. 
The left-hand portion of Figure 5.2 shows the type A curves [W(U,,~) versus l/UA] 
and the right-hand portion the type B curves [W(u,,p) versus 1/uB]; 

- Prepare the observed data curve on another sheet of log-log paper of the same scale 
by plotting the values of the drawdown s against the corresponding time t for a 
single observation well at  a distance r from the pumped well; 

- Match the early-time observed data plot with one of the type A curves. Note the 
p value of the selected type A curve; 

- Select an arbitrary point A on the overlapping portion of the two sheets and note 
the values of s, t, l/uA, and W(u,,p) for this point; 

- Substitute these values into Equations 5.2 and 5.3 and, knowing Q and r, calculate 
KhD and SA; 

- Move the observed data curve until as many as possible of the late-time observed 
data fall on the type 8 curve with the same p value as the selected type A curve; 

- Select an arbitrary point B on the superimposed sheets and note the values of s, 
t, l/uB, and W(u,,p) for this point; 

- Substitute these values into Equations 5.4 and 5.5 and, knowing Q and r, calculate 

103 



KhD and S y .  The two calculations should give approximately the same value for 

- From the KhD value and the known initial saturated thickness of the aquifer D, 
calculate the value of K,; 

- Substitute the numerical values of Kh, p, D, and r into Equation 5.6 and calculate 
K,; 

- Repeat the procedure with the observed drawdown data from any other observation 
well that may be available. The calculated results should be approximately the same. 

KhD; 

Remarks 
- To check whether the condition SY/SA > 10 is fulfilled, the value of this ratio should 

be determined; 
- Gambolati (1976) (see also Neuman 1979) pointed out that, theoretically, the effects 

of elastic storage and dewatering become additive at large t, the final storativity 
being equal to SA + S,. However, in situations where the effect ofdelayed watertable 
response is clearly evident, SA << S, and the influence of SA at larger times can 
safely be neglected. 

Example 5.1 
To illustrate the Neuman curve-fitting method, we shall use data from the pumping 
test ‘Vennebulten’, The Netherlands (De Ridder 1966). Figure 5.3 shows a lithostrati- 
graphical section of the pumping test area as derived from the drilling data. The imper- 
meable base consists of Middle Miocene marine clays. The aquifer is made up of very 
coarse fluvioglacial sands and coarse fluvial deposits, which grade upward into very 
fine sand and locally into loamy cover sand. The finer part of the aquifer is about 
10 m thick. A well screen was placed between I O  and 21 m below ground surface, 
and piezometers were placed at distances of 10, 30, 90, and 280 m from the well at 
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Figure 5.3 Lithostratigraphical cross-section of the pumping-test site ‘Vennebulten’, The Netherlands 
(after De Ridder 1966) 
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Figure 5.4 Analysisofdata from pumping test ‘Vennebulten’, The Netherlands (r = 90m) with the Neuman 
curve-fitting method 

depths ranging from 12 to 19 m. Shallow piezometers (at a depth of about 3 m) were 
placed at  the same distances. The aquifer was pumped for 25 hours at  a constant 
discharge of 36.37 m3/hr (or 873 m3/d). Table 5.1 summarizes the drawdown observa- 
tions in the piezometer at 90 m. 
The observed time-drawdown data of Table 5.1 are plotted on log-log paper (Figure 
5.4). The early-time segment of the plot gives the best match with the Neuman type 
A curve for p = 0.01. The match point A has the coordinates 1/uA = IO,  W(uA,p) 
= 1 , s  = 4.8 x 10-2m,andt = 10.5min = 7.3 x 10-3d. 
The values of KhD and SA are obtained from Equations 5.2 and 5.3 

The coordinates for match point B of the observed data plot and the type B curve 
for p = 0.01 are l/u, = lo2, W(u,,p) = 1, s = 4.3 x m and t = 880 min = 
6.1 x IO-Id. 
Calculating the values of KhD and S, from Equations 5.4 and 5.5, we obtain 

873 x I = 1616m2/d 47c x 4.3 x 10-2 
Q KhD = - W(U,,~) = 47cs 
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4KhDtu, - 4 x 1616 x 6.1 x IO-’ x 
= 4.9 - 

r2 902 sy = 

Knowing the thickness of the aquifer D = 21 m, we can calculate the hydraulic conduc- 
tivity for horizontal flow 

Table 5.1 Summary of data from piezometer WI1/90; pumping test ‘Vennebulten’, The Netherlands (after 
De Ridder 1966) 

Time Drawdown Drawdown Time Drawdown Drawdown 
(min) deep shallow (min) deep shallow 

piezometer piezometer piezometer piezometer 
(m) ( 4  ( 4  (m) 

O 
1.17 
1.34 
1.7 
2.5 
4.0 
5 .O 
6.0 
7.5 
9 

14 
18 
21 
26 
31 

O 
0.004 
0.009 
0.015 
0.030 
0.047 
0.054 
0.061 
0.068 
0.064 
0.090 
0.098 
0.103 
0.1 I O  
0.115 

O 41 
51 
65 
85 

115 
175 
260 

0.005 300 
3 70 

0.006 430 
0.008 485 
0.010 665 

1.340 
0.01 1 1.490 
0.014 1.520 

0.128 
0.133 
0.141 
0.146 
0.161 
0.161 
0.172 
0.173 
O. 173 
0.179 
0.183 
0.182 
0.200 
0.203 
0.204 

0.018 
0.022 
0.026 
0.028 
0.033 
0.044 
0.050 
0.055 

0.061 
0.071 
0.096 
0.099 
0.099 

From Equation 5.6, the hydraulic conductivity for vertical flow can be calculated 

The value of the ratio SY/SA is 

sy - 4.9 x 10-3 -- 
SA 5.2 x lo4 = 9’4 

The condition of S,/SA > 10 is therefore nearly satisfied. Note that the value of Sy 
calculated by means of the ‘B’ curves is unreasonably low. This is in agreement with 
earlier observations that the determination of S, from ‘B’ curves remains a dubious 
procedure (Van der Kamp 1985). 

5.2 Steady-state flow 

When the drawdown differences have become negligibly small with time, the Thiem- 
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Dupuit method can be used to calculate the transmissivity of an unconfined aquifer. 

5.2.1 Thiem-Dupuit’s method 

The Thiem-Dupuit method can be used if the following assumptions and conditions 
are satisfied: 
- The assumptions listed in the beginning of this chapter; 
- The aquifer is isotropic; 
- The flow to the well is in steady state; 
- The Dupuit (1863) assumptions are satisfied, i.e.: . The velocity of flow is proportional to the tangent of the hydraulic gradient instead 

The flow is horizontal and uniform everywhere in a vertical section through the 
of the sine as it is in reality; 

axis of the well. 

If these assumptions are met, the well discharge for steady horizontal flow to a well 
pumping an unconfined aquifer (Figure 5.5) can be described by 

dh Q = 2xrKh- dr 

After integration between r, and r2 (with r2 > rJ, this yields 

which is known as the formula of Dupuit. 
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Figure 5.5 Cross-section of a pumped unconfined aquifer (steady-state flow) 
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Since h = D - s, Equation 5.7 can be transformed into 

Replacing s - s2/2D with s’ = the corrected drawdown, yields 

~TcKD(s’,I - ~ ’ ~ 2 )  - 2xKD(s’,I - ~ ’ ~ 2 )  - 
Q = ln(r2/rl) 2.30 log (r2/rI) 

This formula is identical to the Thiem formula (Equation 3.2) for a confined aquifer, 
so the methods in Section 3.1.1 can also be used for an unconfined aquifer. 

Remarks 
- The Dupuit formula (Equation 5.7) fails to give an accurate description of the draw- 

down curve near the well, where the strong curvature of the watertable contradicts 
the Dupuit assumptions. These assumptions ignore the existence of a seepage face 
at  the well and the influence of the vertical velocity components, which reach their 
maximum in the vicinity of the well; 

- An approximate steady-state flow condition in an unconfined aquifer will only be 
reached after long pumping times, i.e. when the flow in the aquifer is essentially 
horizontal again and the drawdown curve has followed the late-time segment of 
the S-shaped curve that coincides with the Theis curve for sufficiently long time. 
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