Annex 4 Suitable stilling basins

4.1 Introduction

Unless a weir or flume is founded on rock, a downstream stilling basin will be necessary. The floor of the stilling basin should be set at such a level that the hydraulic jump, if formed, occurs on the sloping downstream weir face or at the upstream end of the basin floor so that the turbulence in the jump will abate to a level which will not damage the unprotected downstream channel bed. Calculations for the floor level should be made for several discharges throughout the anticipated range of modular flow. To aid the engineer in designing a suitable stilling basin, hydraulic design criteria of a number of devices are given below.

4.2 Straight drop structures

4.2.1 Common drop

Illustrated in Figure A4.1 is a drop structure that will dissipate energy if installed downstream of a weir with a vertical back face. The aerated free falling nappe will strike the basin floor and turn downstream at Section U. Beneath the nappe a pool is formed which supplies the horizontal thrust required to turn the nappe downstream. Because of the impact of the nappe on the basin floor and the turbulent circulation in the pool beneath the nappe, some energy is lost.

Further energy will be dissipated in the hydraulic jump downstream of section U. The remaining energy head downstream from the basin, H_d , does not vary greatly

Figure A4.1 Straight drop structures

with the ratio $\Delta Z/H_1$ and is equal to about 1.67 H₁ (adapted from Henderson 1966). This value of 1.67 H₁ provides a satisfactory estimate for the basin floor level below the energy level of the downstream canal. The hydraulic dimensions of a straight drop can be related to the following variables (see Figure A4.1):

H_1	= upstream sill-referenced energy head	n = step height
ΔH	= change in energy head across structure	$y_u = flow depth at section U$
H_d	= downstream energy head	$y_d = downstream flow depth$
q .	= discharge per unit width of sill	relative to basin floor
g	= accelaration due to gravity	$y_2 = flow depth in downstream$
-		channel

These variables can be combined to make a first estimate of the drop height

$$\Delta Z = (\Delta H + H_d) - H_1 \tag{A4.1}$$

Subsequently, the flow velocity and depth at section U may be estimated by

$$v_{\rm u} = \sqrt{2g\Delta Z} \tag{A4.2}$$

and by the continuity equation

$$y_u = \frac{q}{v_u} \tag{A4.3}$$

The flow at section U can best be characterized by the dimensionless Froude number

$$Fr_{u} = \frac{V_{u}}{\sqrt{gy_{u}}}$$
(A4.4)

This Froude number can be related directly to the straight drop geometry through the length ratios $y_d/\Delta Z$ and $L_p/\Delta H$, values of which can be read from Figure A4.2 (see also Figure A4.1).

The length of the hydraulic jump L_j , downstream from section U in Figure A4.1, can be calculated by (Henderson 1966),

$$L_{i} = 6.9 (y_{d} - y_{u}) \tag{A4.5}$$

It is important to realize that the downstream water depths $(y_d \text{ and } y_2)$ are caused not by the drop structure, but by the flow characteristics of the downstream canal. If these characteristics are such that the required depth y_d is produced, a jump will form; otherwise it will not form and not enough energy will be dissipated within the basin. Additional steps, such as lowering the basin floor and adding an end sill, must be taken to assure adequate energy dissipation.

Because of seasonal changes of the hydraulic resistance of the canal, however, the flow velocity as calculated by Manning's equation changes together with the water depth y_d . The jump thus tends to drift up and down the canal. This unstable behavior is often undesirable, and is then suppressed by increasing the flow resistance by means of an abrupt step at the end of the basin. Usually, this step is constructed at a distance

$$L_i = 5(n + y_2)$$
 (A4.6)

downstream of section U. For design purposes, Figure A4.3 can be used to determine the largest required value of n, if $Fr_u = v_u/\sqrt{gy_u}$, y_u , and y_2 are known.

Figure A4.2 Dimensionless plot of straight drop geometry (Bos e.a. 1984)

Figure A4.3 Experimental relationships between Fr_u , y_2/y_u , and n/y_u for an abrupt step (after Forster and Skrinde 1950)

4.2.2 U.S. ARS basin

The U.S. Agricultural Research Service has developed an alternative basin which is especially suitable if tailwater level is greater than the sequent depth and varies independently of the flow rate. This impact block type basin was developed for low heads and gives a good energy dissipation over a wide range of tailwater levels. The energy dissipation is principally by turbulence induced by the impingement of the incoming jet upon the impact blocks. The required downstream water depth, therefore, can be slightly less than with the previous basin but can vary independently of the drop height ΔZ . To function properly, the downstream water depth y_d must not be less than 1.45 H₁, while at Q_{max} the Froude number Fr_u should not exceed 4.5.

Upstream from section U, the length L_p may be determined by use of Figure A4.2. The linear dimensions of the basin downstream from section U are shown in Figure A4.4 as a function of H_1 .

Figure A4.4 Impact block type basin

4.3 Inclined drops or chutes

4.3.1 Common chute

Downstream from the control section of either a weir or flume, a sloping downstream face or expansion is a common design feature. The slope of the downstream face usually varies between 1 to 4 and 1 to 6. By approximation we may write that the flow velocity over the downstream face equals

$$\mathbf{y}_{\mathrm{u}} = \mathbf{q} / \mathbf{y}_{\mathrm{u}} \tag{A4.7}$$

where q is the unit discharge on the downstream face and y_u is the water depth at a particular point on the downstream apron.

Values of y_u may be determined by the use of Table A4.1. The symbols used in Table A4.1 are defined in Figure A4.5.

A hydraulic jump will form in the horizontal (rectangular) basin provided that the tailwater depth is greater than the sequent depth y_2 to y_u and v_u . Minimum values of y_2 may be read from Figure A4.3 for rectangular basins. The length of such a horizontal basin equals that part of the basin which is situated downstream of Section U in Figure A4.1, and equals $L_j = 5(n + y_2)$.

It is recommended that a tabulation be made of the Froude number Fr_u near the toe of the downstream face, and of the depth of flow y_u throughout the anticipated

Figure A4.5 Definition sketch for Table A4.1

				-			
$\frac{\Delta H}{H_1}$	<u>yd</u> yu	$\frac{y_u}{H_1}$	$\frac{{v_u}^2}{2gH_1}$	$\frac{H_u}{H_1}$	$\frac{y_d}{H_1}$	$\frac{\mathbf{v_d}^2}{2\mathbf{g}\mathbf{H}_1}$	$\frac{H_d}{H_1}$
0.2446	3.00	0.3669	1.1006	1.4675	1.1006	0.1223	1.2229
0.2688	3.10	0.3599	1.1436	1.5035	1.1157	0.1190	1.2347
0.2939	3.20	0.3533	1.1870	1.5403	1.1305	0.1159	1.2464
0.3198	3.30	0.3469	1.2308	1.5777	1.1449	0.1130	1.2579
0.3465	3.40	0.3409	1.2749	1.6158	1.1590	0.1103	1.2693
0.3740	3.50	0.3351	1.3194	1.6545	1.1728	0.1077	1.2805
0.4022	3.60	0.3295	1.3643	1.6938	1.1863	0.1053	1.2916
0.4312	3.70	0.3242	1.4095	1.7337	1.1995	0.1030	1.3025
0.4609	3.80	0.3191	1.4551	1.7742	1.2125	0.1008	1.3133
0.4912	3.90	0.3142	1.5009	1.8151	1.2253	0.0987	1.3239
0.5222	4.00	0.3094	1.5472	1.8566	1.2378	0.0967	1.3345
0.5861	4.20	0.3005	1.6407	1.9412	1.2621	0.0930	1.3551
0.6525	4.40	0.2922	1.7355	2.0276	1.2855	0.0896	1.3752
0.7211	4.60	0.2844	1.8315	2.1159	1.3083	0.0866	1.3948
0.7920	4.80	0.2771	1.9289	2.2060	1.3303	0.0837	1.4140
0.8651	5.00	0.2703	2.0274	2.2977	1.3516	0.0811	1.4327
0.9400	5.20	0.2639	2.1271	2.3910	1.3723	0.0787	1.4510
1.0169	5.40	0.2579	2.2279	2.4858	1.3925	0.0764	1.4689
1.0957	5.60	0.2521	2.3299	2.5821	1.4121	0.0743	1.4864
1.1763	5.80	0.2467	2.4331	2.6798	1.4312	0.0723	1.5035
1.2585	6.00	0.2417	2.5372	2.7789	1.4499	0.0705	1.5203
1.3429	6.20	0.2367	2.6429	2.8796	1.4679	0.0687	1.5367
1.4280	6.40	0.2321	2.7488	2.9809	1.4858	0.0671	1.5529
1.5150	6.60	0.2277	2.8560	3.0837	1.5032	0.0655	1.5687
1.6035	6.80	0.2235	2.9643	3.1878	1.5202	0.0641	1.5843
1.6937	7.00	0.2195	3.0737	3.2932	1.5368	0.0627	1.5995
1.7851	7.20	0.2157	3.1839	3.3996	1.5531	0.0614	1.6145
1.8778	7.40	0.2121	3.2950	3.5071	1.5691	0.0602	1.6293
1.9720	7.60	0.2085	3.4072	3.6157	1.5847	0.0590	1.6437
2.0674	7.80	0.2051	3.4723	3.7254	1.6001	0.0579	1.6580
2.1641	8.00	0.2019	3.6343	3.8361	1.6152	0.0568	1.6720
2.2620	8.20	0.1988	3.7490	3.9478	1.6301	0.0557	1.6858
2.3613	8.40	0.1958	3.8649	4.0607	1.6446	0.0548	- 1.6994
2.4615	8.60	0.1929	3.9814	4.1743	1.6589	0.0538	1.7127
2.5630	8.80	0.1901	4.0988	4.2889	1.6730	0.0529	1.7259
2.6656	9.00	0.1874	4.2171	4.4045	1.6869	0.0521	1.7389
2.7694	9.20	0.1849	4.3363	4.5211	1.7005	0.0512	1.7517
2.8741	9.40	0.1823	4.4561	4.6385	1.7139	0.0504	1.7643
2.9801	9.60	0.1799	4.5770	4.7569	1.7271	0.0497	1.7768
3.0869	9.80	0.1775	4.6985	4.8760	1.7402	0.0489	1.7891
3.1949	10.00	0.1753	4.8208	4.9961	1.7530	0.0482	1.8012
3.4691	10.50	0.1699	5.1300	5.2999	1.7843	0.0465	1.8309
3.7491	11.00	0.1649	5.4437	5.6087	1.8146	0.0450	1.8594
4.0351	11.50	0.1603	5.7623	5.9227	1.8439	0.0436	1.8875
4.3267	12.00	0.1560	6.0853	6.2413	1.8723	0.0423	1.9146
4.6233	12.50	0.1520	6.4124	6.5644	1.9000	0.0411	1.9411
4.9252	13.00	0.1482	6.7437	6.8919	1.9268	0.0399	1.9667
5.2323	13.50	0.1447	7.0794	7.2241	1.9529	0.0389	1.9917
5.5424	14.00	0.1413	7.4189	7.5602	1.9799	0.0379	2.0178
5.8605	14.50	0.1381	7.7625	7.9006	2.0032	0.0369	2.0401
6.1813	15.00	0.1351	8.1096	8.2447	2.0274	0.0361	2.0635
6.5066	15.50	0.1323	8.4605	8.5929	2.0511	0.0352	2.0863
6.8363	16.00	0.1297	8.8153	8.9450	2.0742	0.0345	2.1087
7.1702	16.50	0.1271	9.1736	9.3007	2.0968	0.0337	2.1305
7.5081	17.00	0.1247	9.5354	9.6601	2.1190	0.0330	2.1520
7.8498	17.50	0.1223	9.9005	10.0229	2.1407	0.0323	2.1731
8.1958	18.00	0.1201	10.2693	10.3894	2.1619	0.0317	2.1936
8.5438	18.50	0.1180	10.6395	10.7575	2.1830	0.0311	2.2141
8.8985	19.00	0.1159	11.0164	11.1290	2.2033	0.0305	2.2339
9.2557	19.50	0.1140	11.3951	11.5091	2.2234	0.0300	2.2534
9.6160	20.00	0.1122	11.7765	11.8887	2.2432	0.0295	2.2727

Table A4.1 Dimensionless Ratios for Hydraulic Jumps

discharge range. The sequent depth rating should be plotted with the stage-discharge curve of the tailwater channel to ensure that the jump forms on the basin floor.

4.3.2 SAF Basin

An alternative stilling basin suitable for use on low-head structures was developed at the St. Anthony Falls Hydraulic Laboratory (SAF-basin) of the University of Minnesota. The basin is used as a standard by the U.S. Soil Conservation Service, and has been reported by Blaisdell (1943, 1959). The general dimensions of the SAF-basin are shown in Figure A4.6.

The design parameters for the SAF-basin are given in Table A4.2.

$Fr_u = v_u \sqrt{gA_u/B_u}$	L _B /y ₂	TW/y ₂	
1.7 to 5.5	$4.5/{\rm Fr_u}^{0.76}$	$1.1 - Fr_u^2/120$	
5.5 to 11	$4.5/{\rm Fr_u}^{0.76}$	0.85	
11 to 17	$4.5 {\rm Fr_u}^{0.76}$	$1.0 - Fr_u^2/800$	

Table A4.2 Design parameters of the SAF-basin

In Table A4.2 y_2 is the theoretical sequent depth of the jump corresponding to y_u as shown in Figure A4.3. The height of the end sill is given by $C = 0.07 y_2$ and the freeboard of the sidewall above the maximum tailwater depth to be expected during the life of the basin is given by $z = y_2/3$.

The sidewalls of the basin may be parallel or they may diverge. Care should be taken that the floor blocks occupy between 40 and 55% of the stilling basin width, so that their width and spacing must be increased with the amount of divergence of the sidewalls. The effect of air entrainment should not be taken into account in the design of the basin; however, its existence within the stilling basin calls for a generous freeboard $(y_2/3)$.

4.4 Riprap protection

To prevent bank damage by erosive currents passing over the end sill of a basin or leaving the tail of a structure, riprap is usually placed on the downstream channel bottom and banks. Several factors affect the stone size required to resist the forces which tend to move riprap. In terms of flow leaving a structure, these factors are velocity, flow direction, turbulence and waves. The purpose of this section is to give the design engineer a tool to determine the size of riprap to be used downstream from discharge measurement devices or stilling basins and to determine the type of filter or bedding material placed below the riprap.

RECTANGULAR STILLING BASIN HALF PLAN

Design A Tailwater depth calculated by $TW/y_2 = 1.1 - Fr_u^2/120$

Design B Tailwater depth is 15% greater than in Design A

Photos: 1:20 scale model of SAF stilling basin discharging 1200 m³/s in prototype $b_c=40.0$ m, $\Delta H=3.50$ m

4.4.1 Determining maximum stone size in riprap mixture

From published data, a tentative curve was selected showing the minimum stone diameter as a function of the bottom velocity. This curve is shown in Figure A4.7. Downstream of stilling basins, the conception 'bottom velocity' is difficult to define because of the highly turbulent flow pattern. The velocity at which the water strikes the riprap is rather unpredictable unless the basin is tested.

For practical purposes, however, Peterka (1964) recommends that, to find the stone diameter in Figure A4.7, use be made of the average velocity based on discharge divided by cross-sectional area at the end sill of the stilling basin. If no stilling basin is needed because $Fr_u < 1.7$, Figure A4.7 should be entered with the impact velocity, being

$$v_{\rm u} = \sqrt{2g}\,\Delta Z \tag{A4.8}$$

More than 60% of the riprap mixture should consist of stones which have length, width, and thickness dimensions as nearly alike as is practicable, and be of curve size or larger; or the stones should be of curve weight or heavier and should not be flat slabs.

4.4.2 Filter material placed beneath riprap

If riprap stones of a protective lining were to be installed directly on top of the fine material in which the canal is excavated, grains of this subgrade would be washed through the openings in between the riprap stones. This process is partly due to the turbulent flow of canal water in and out of the voids between the stones and partly due to the inflow of water that leaks around the structure or flows into the drain.

To avoid damage to a riprap protection because of the washing of subgrade, a filter must be placed between the riprap and the subgrade (see Figure A4.8). The protective construction as a whole and each separate layer must be sufficiently permeable to water entering the canal through its bed or banks. Further, fine material from an underlying filter layer or the subgrade must not be washed into the voids of a covering layer.

4.4.3 Permeability to water

To maintain a sufficient permeability to water of the protective construction of Figure A4.8, the following d_{15}/d_{15} ratios should have a value between 5 and 40 (USBR 1973):

$$\frac{d_{15} \text{ layer } 3}{d_{15} \text{ layer } 2} \text{ and } \frac{d_{15} \text{ layer } 2}{d_{15} \text{ layer } 1} \text{ and } \frac{d_{15} \text{ layer } 1}{d_{15} \text{ subgrade}} = 5 \text{ to } 40$$
(A4.9)

where d_{15} equals the diameter of the sieve opening whereby 15% of the total weight of the sample passes the sieve. Depending on the shape and gradation of the grains in each layer, the above-mentioned 5 to 40 range of the ratios can be narrowed as follows (Van Bendegom 1969):

Figure A4.7 Curve to determine maximum stone size

.

Figure A4.8 Example of filter between riprap and original material (subgrade) in which canal is excavated

1.	Homogeneous round grains (gravel)	5 to 10
2.	Homogeneous angular grains (broken gravel, rubble)	6 to 20
3.	Well-graded grains	12 to 40

To prevent the filter from clogging it is, in addition, advisable that for each layer

 $d_5 \ge 0.75 \,\mathrm{mm} \tag{A4.10}$

4.4.4 Stability of each layer

To prevent the loss of fine material from an underlying filter layer or the subgrade through the openings in a covering layer, two requirements must be met:

The following d_{15}/d_{85} ratios should not exceed 5 (Bertram 1940)

$$\frac{d_{15} \text{ layer } 3}{d_{85} \text{ layer } 2} \text{ and } \frac{d_{15} \text{ layer } 2}{d_{85} \text{ layer } 1} \text{ and } \frac{d_{15} \text{ layer } 1}{d_{85} \text{ subgrade}} \le 5$$
(A4.11)

while the d_{50}/d_{50} should range between 5 and 60 (U.S. Army Corps of Engineers 1955).

$$\frac{d_{50} \text{ layer } 3}{d_{50} \text{ layer } 2} \text{ and } \frac{d_{50} \text{ layer } 2}{d_{50} \text{ layer } 1} \text{ and } \frac{d_{50} \text{ layer } 1}{d_{50} \text{ subgrade}} = 5 \text{ to } 60$$
(A4.12)

As before, the ratio in Equation A4.12 depends on the shape and graduation of the grains as follows:

1.	Homogeneous round grains (gravel)	5 to 10
2.	Homogeneous angular grains (broken gravel, rubble)	10 to 30
3.	Well-graded grains	12 to 60

The requirements in this section describe the sieve curves of the successive filter layers. Provided that the sieve curve of the riprap layer and the subgrade are known, other layers can be plotted. An example of plotting sieve curves of a construction consisting of one riprap and two filter layers is shown in Figure A4.9. In practice one should use materials that have a grain size distribution which is locally available, since it is uneconomic to compose a special mixture. To provide a stable and effectively functioning filter, the sieve curves for subgrade and filter layers should run about parallel for the small-diameter grains.

388

<u>م :</u>

Figure A4.9 Sieve curves of a filter construction

4.4.5 Filter construction

To obtain a fair grain size distribution throughout a filter layer, each layer should be sufficiently thick. The following thicknesses must be regarded as a minimum for a filter construction made in the dry

- sand, fine gravel 0.05 to 0.10 m

- gravel 0.10 to 0.20 m

- stones 1.5 to 2 times the largest stone diameter.

With filters constructed under water, these thicknesses have to be increased considerably to compensate for irregularities in the subgrade and because it is more difficult to apply an even layer under water.

Many variations can be made on the basic filter construction. One or more of the layers can be replaced with other materials. With some protective linings, only the riprap layer is maintained, while the underlying layers are replaced by one single layer. For example

- concrete blocks on a nylon filter

- stones on braided azobe slabs on plastic filter

- gabions on fine gravel

- nylon-sand mattresses

The usual difficulty with these variants is their perviousness to underlying sand. The openings in each layer should not be greater than $0.5 \times d_{85}$ of the underlying material. If openings are greater, one should not replace all underlying layers but maintain as many layers (usually one) as are needed to prevent the subgrade from being washed through the combined layer.

At structure-to-filter and filter-to-unprotected channel 'joints', the protective construction is most subject to damage. This is because the filter layer is subject to subsi-

Figure A4.10 Examples of filter construction details (after van Bendegom 1969)

dence while the (concrete) structure itself is well founded. Underlying material (subgrade) may be washed out at these joints if no special measures are taken. It is recommended that the thickness of the filter construction be increased at these places. Some examples of common constructional details are shown in Figure A4.10.

As a rule of thumb we may suggest a length of riprap protection which is neither less than 4 times the (maximum) normal depth in the tailwater channel, nor less than the length of the earth transition, nor less than 1.50 m.

4.5 Selected list of references

Van Bendegom, L. et al. 1969. Principles governing the design and construction of economic revetments for protecting the banks of rivers and canals for ocean and inland navigation. 20th Intern. Navigation Congr. Paris, 43 pp.

Berry, N.K. 1948. The start of bed load movement. Thesis. Univ. of Colorado, USA.

Bertram, G.E. 1940. An experimental investigation of protective filters. Publications of the Graduate School of Engineering. Harvard University. No. 2657.

Blaisdell, F.W. 1943. The SAF stilling basin. U.S. Dept.of Agric. Soil Conservation Service. St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minn.

- Blaisdell, F.W. 1959. The SAF stilling basin. A structure to dissipate the destructive energy in high-velocity flow from spillways. U.S. Dept.of Agric. Service in cooperation with the Minnesota Agric. Exp. Sta. & St. Anthony Falls Hydraulic Laboratory. Agric. Handbook 156. Washington D.C. U.S. Gov. Printing Office.
- Bos, M.G., J.A. Replogle and A.J. Clemmens 1984. Flow measuring flumes for open channel systems. John Wiley, New York. 321 pp.
- Canals and Related Structures 1961. Commissioner's office, Denver (Col.). U.S. Dept.of the Interior, Bureau of Recl. Design Standards 3.
- Design of Small Dams. 1973. 2nd edition, U.S. Dept.of the Interior. Bureau of Recl., Washington D.C. U.S. Gov. Printing Office. 816 pp.
- Dort, J.A. van and M.G. Bos. 1974. Drainage principles and applications. Chapt. 29: Main drainage system Publication 16. Vol. IV. Wageningen. pp. 124-224.
- Forster, J.W., and R.A. Skrinde. 1950. Control of the hydraulic jump by sills. Transactions, American Society of Civil Engineers. Vol. 115, pp. 973-987.

Henderson, F.M. 1966. Open Channel Flow. MacMillan Co., New York 522 pp.

Mavis, F.T., and L.M. Laushey 1948. A reappraisal of the beginnings of bed movement-competent velocity. Proc. of the Int. Assoc. for Hydraulic Research. Stockholm. pp. 213-218.

Peterka, A.J. 1964. Hydraulic design of stilling basins and energy dissipators. U.S. Dept. of the Interior. Bureau of Recl. Water Resources Techn. Publ. Engineering Monograph No. 25. 223 pp.

U.S. Army Corps of Engineers 1955. Drainage and erosion control-subsurface drainage facilities for airfields. Part XIII, Chapter 2, Engineering Manual, Militairy Construction, Washington, DC. 15 pp.

Vlugter, H. 1941. 12¹/₂ Jaar hydrodynamische research aan waterloopkundige modellen in Nederlandsch Indië. De Ingenieur in Ned. Indië. No. 9.

List of principal symbols

Α	cross-sectional area	L^2
а	height of rectangular weir section (Sutro)	L .
а	acceleration	LT^{-2}
В	channel surface width	L .
b _c	breadth at bottom of control section	L
b,	effective breadth of weir crest $(b_c + K_b)$	L
Č	discharge coefficient	dimensionless
Č,	approach velocity coefficient	dimensionless
C.	effective discharge coefficient ($C_d C_v$)	dimensionless
c	subscript for critical flow condition	dimensionless
D	diameter of float	L
D.	diameter of pipe	L
d.	diameter of circular weir	L
Ē	energy	ML^2T^{-2}
Ē	complete elliptical integral of the first kind	dimensionless
e	exponential number, 2, 71828	dimensionless
F	force	MLT ⁻²
F	coefficient correction factor	dimensionless
Fr	Froude number $O(B/gA^3)^{\frac{1}{2}}$	dimensionless
f	friction coefficient in the Darcy-Weisbach equation	dimensionless
f	drowned flow reduction factor	dimensionless
G	weight	MLT ⁻²
G	relative slope factor	dimensionless
σ	gravitational acceleration	LT ⁻²
ь	total energy head over crest	L
н	specific energy	L
H.	total unstream energy head over crest	L
H.	total downstream energy head over crest	L
h.	unstream head over crest	L
h.	tailwater head over crest	L
h	effective unstream head over crest $(h_1 + K_1)$	Ē
Λh	bead loss over structure $(h_1 - h_2)$	L
K	weir constant	dimensionless
K	head loss coefficient	dimensionless
ĸ	complete elliptical integral of the second kind	dimensionless
к k	filling ratio circular weir $(h/d)^{0.5}$	dimensionless
K L	acceleration due to mass forces	L T ⁻²
л Т	flowwise length of crest	I
L I	length of channel reach	L
נ. 1	length of nine	L
ı m	mass	M
m	mass coordinate direction (binormal)	dimensionless
111 m	coordinate direction (princinal pormal)	dimensionless
11 12	number of data	dimensionless
ш	number of uata	unitensioniess

Р	wetted perimeter of flow cross-section	dimensionless
Р	pressure	ML-1T-2
p ₁	height of crest above approach channel bed	L
\mathbf{p}_2	height of crest above tailwater channel bed	L
Õ	discharge rate	$L^{3}T^{-1}$
Ò.	discharge rate through rectangular section	$L^{3}T^{-1}$
Õ.	discharge rate through curved section	L ³ T ⁻¹
0.	volumetric air discharge rate	L ³ T ⁻¹
Q	discharge per unit width	L^2T^{-1}
Ŕ	hydraulic radius (A/P)	L
R۲	radius of embankment	L
r	radius of circular weir	L
r	radius of curved streamline	L
r	radius of float-wheel	Ē.
r	radius of round-nose weir crest	Ĩ.
S	length of side weir	Ē
S.	submergence ratio (H_2/H_1)	dimensionless
S.	submergence ratio (h_2/h_1)	dimensionless
S.	modular limit	dimensionless
S m	coordinate direction (velocity direction)	dimensionless
Ťr	resisting torque due to friction	ML ² T ⁻²
τ̈́W	tailwater level	L
t	time	T
u	power of head or of differential head	dimensionless
V	volume of fluid	L ³
v	fluid velocity	LT ⁻¹
$\overline{\mathbf{v}}$	average fluid velocity (O/A)	LT ⁻¹
W	friction force	MLT ⁻²
w	acceleration due to friction	LT-2
w	underflow gate opening	L
Х	relative error	dimensionless
Х	horizontal distance	L
х	breadth of weir throat at height y above crest	L
х	factor due to boundary roughness	dimensionless
x	cartesian coordinate direction	dimensionless
Y	vertical distance	L
у	vertical depth of flow	L
v	coordinate direction	dimensionless
z	coordinate direction	dimensionless
z	side slope ratio horz/vert	dimensionless
ΔZ	drop height	L
α	velocity distribution coefficient	dimensionless
α	diversion angle	degrees
β	half angle of circular section $(1/2 \alpha)$	degrees
γ	Q_{max}/Q_{min}	dimensionless
δ	error	dimensionless
δ	contraction coefficient	dimensionless

.

- Δ small increment of
- $\Delta (\rho_s \rho)/\rho$: relative density
- θ weir notch angle
- θ angle of circular section
- π circular circumference-diameter ratio; 3.1416
- ρ mass density of water
- ρ_{air} mass density of air
- ρ_s mass density of bed material
- ω circular section factor
- ξ friction loss coefficient
- σ standard deviation
- σ' relative standard deviation

Subject index

A

Access door	2.6
Accuracy of measurement 3.2.10;	A 2.1
Accuracy of propeller meters	9.7.4
Actual head 6.6.1;	6.6.2
Adjustable orifice	8.5.1
Adjustable proportional module	8.5.1
Adjustable sliding gate	8.5.1
Aeration demand	1.10
Aeration demand of weirs	1.14
Air bubbles, prevention of	2.12
Air pocket 1.13; 1.14;	8.3.1
Air pocket underneath the nappe	1.4
Algal growth	1.12
Algal growth, prevention of	A 2.6
Algal growth on weirs	3.2.8
Alternate depth 1.8; 8.2.3;	8.4.3
Angle of divergence 1	.15.2
Anti-vortex baffle	8.3.1
Approach channel 2.	1; 2.3
Archimedes' law	2.9
Average flow velocity	1.6

В

Backwater effect, avoiding of	3.2.6
Baffle module	8.7.1
Baffles	2.3

Baffle-type stilling basin	8.3.1
Bank damage, prevention c	of erosion
	A 4.4
Basic discharge coefficient	4.4.2
Bedding material beneath r	iprap
	A 4.4.2
Bed-load, see also Total-load	d equation
Bed-load	3.2.6
Bernoulli's equation 1.	7;8.4.3;A1.3
Bifurcation	3.2.5
Bi-normal	1.1
Bottom velocity	A4.4.1
Boundary layer, influence o	of 4.1.2
Boundary layer, displaceme	ent
thickness of sidewalls	4.5.1
Brink depth method	9.5
Broad-crested weir	1.9; 4
Butcher's weir	6.5

С

California pipe method	9.4.2
Canal bifurcation	3.2.5
Cartesian coordinate system	A 1.2
Cavitation, danger of	6.6.1; 6.7.1
Centripetal acceleration	1.4; A1.4
Channel expansions	1.15

dimensionless dimensionless degrees dimensionless ML⁻³ ML⁻³ dimensionless dimensionless dimensionless dimensionless

6.1.1
3.2.6
A 4.3
5.3
8.1
5.4
2.6
ion
ficient
4.4.2
A 2.6
A 2.1
8.3
1.2;1.7
8.4.2; 8.8.2
1.8
2.1
1.1
A1.2
8.6.1
2.6; 2.9
3.2.2
1.8
1.11; 7
6.3.1
le orifice
8.5
A1.4
1.11; 7.3.1
6.7

D

Damage to measuring structures	3.2.8
Danaïdean tub	8.8
Darcy-Weissbach equation 1.14	; 9.2.2
Debris, passing of	3.2.7
Design head 6.6.1	; 6.6.2
Dethridge meter	9.6
Differential head meter	2.12
Dip-stick	2.6
Discharge, percentage error in	1.14
Discharge, undesirable change of	3.2.8
Discharge coefficient	1.9.1
Discharge coefficient of side weir	
	A3.2.2

Discharge determination en	lors, causes
	9.7.2
Discharge equations, see Hee	ad
discharge, Stage discharge	2
Discharge measuring, displa	acement
principle	9.6.1
Discharge measuring structu	re, see also
Measuring structures	
Discharge measuring struct	ure,
function of	3.2.1
Discharge measuring struct	ure, errors
	A2.4
Discharge volume measurer	nent, error
in	A2.8
Diseases, prevention of	3.2.9
Distribution of errors	A2.4
Division boxes	9.1.1
Divisors	9.1
Downstream expansion	1.15.1
Downstream expansion, truncation of	
	1.15; 7.2.2
Downstream head over the	crest 2.4
Drop	6.1.1
Drop, inclined	A4.3
Drop height	1.14; A4.2.1
Drop structure	A4.2

E

Eddy	8.3.1
Effective discharge coefficie	nt
	1.12; 1.13
Effective discharge coefficie	nt of side
weir A3	3.2.2; A3.2.3
Elevation head	1.3; A1.3
Energy, see also Kinetic ener	gy,
Potential energy	
Energy dissipation	A4.2.2
Energy losses at base of stra	ight drop
	A4.2.1
Energy losses beneath the na	appe A4.2.1
Energy losses over hydraulie	c jump
	A4.2.1
Energy losses over metergat	e 8.6.3
Entrainment of air, prevent	ion 8.1.3
Entrance transition	7.1.1
Equation of motion 1.3	; A1.2; A1.3

Erosion, bank damage by	A4.4
Error, see Measurement erro	r, Registra-
tion error, Systematic error	
Euler, equation of motion	A1.2;A1.5
Expansions in closed condui	ts 1.15.2

\mathbf{F}

Faiyum weir	4.5
Filter construction	A4.4.3
Filter material beneath riprap	A4.4.2
Float, diameter of	2.9
Float tape	2.6; 2.8
Float wheel	2.8
Float-operated recorder	2.5; 2.6
Flood gauge	2.7
Flow disturbances	8.3.1
Flow divisor, see also Divisors	
Flow divisor, function of	3.2.1
Flow geometry at straight drops	
	A4.2.1
Flow parameter	3.2.6
Flow straightening vanes	9.7.2
Flow totalizer	3.2.1
Fluid mechanics, basic equations	A1
Flume, see also Cutthroat flume,	
Flume, see also Cutthroat flume, H-flume, Parshall flume, C	ritical-
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume	ritical-
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy hea	<i>ritical-</i> ad
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he	ritical- ad 3.2.2
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he Forchheimer equation	<i>ritical</i> - ad 3.2.2 A3.2.4
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he Forchheimer equation Foundation level of a stilling wel	ritical- ad 3.2.2 A3.2.4 I 2.6
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe	ritical- ad 3.2.2 A3.2.4 I 2.6 9.3.1
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge	ritical- ad 3.2.2 A3.2.4 I 2.6 9.3.1 1.12
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge Free discharging orifice	ritical- ad 3.2.2 A3.2.4 I 2.6 9.3.1 1.12 1.12
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge Free discharging orifice Free overfall	ad 3.2.2 A3.2.4 2.6 9.3.1 1.12 1.12 9.5.1
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy her Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge Free discharging orifice Free overfall Freezing, protection of recorders	ritical- ad 3.2.2 A3.2.4 2.6 9.3.1 1.12 1.12 9.5.1 2.11
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy her Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge Free discharge Free overfall Freezing, protection of recorders Friction	ritical- ad 3.2.2 A3.2.4 2.6 9.3.1 1.12 1.12 9.5.1 2.11 A1.2
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy her Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge Free discharge Free discharging orifice Free overfall Freezing, protection of recorders Friction Friction moment, see Internal more	ritical- ad 3.2.2 A3.2.4 1 2.6 9.3.1 1.12 9.5.1 2.11 A1.2 nent
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy her Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge Free discharge Free discharging orifice Free overfall Freezing, protection of recorders Friction Friction moment, see Internal mor Froude number	ritical- ad 3.2.2 A3.2.4 1 2.6 9.3.1 1.12 9.5.1 2.11 A1.2 nent A4.2.1
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge Free discharge Free discharging orifice Free overfall Freezing, protection of recorders Friction Friction moment, see Internal mor Froude number Fully aerated nappe	ritical- ad 3.2.2 A3.2.4 2.6 9.3.1 1.12 9.5.1 2.11 A1.2 ment A4.2.1 1.13
Flume, see also Cutthroat flume, H-flume, Parshall flume, C depth flume Flume, required fall of energy he Forchheimer equation Foundation level of a stilling well Fountain flow from a pipe Free discharge Free discharging orifice Free overfall Freezing, protection of recorders Friction Friction moment, see Internal mon Froude number Fully aerated nappe Fully contracted orifice	ritical- ad 3.2.2 A3.2.4 2.6 9.3.1 1.12 1.12 9.5.1 2.11 A1.2 ment A4.2.1 1.13 8.1.1

G

Gate leaf, shape 8.6.2

Gate opening	8.6.2
Gauge, see Flood gauge,	Recording
gauge	
Gauging station	2.1
Gradual expansion	1.15.2
Gravitational force	A1.2
Guiding grooves	6.5.1

Η

Head-discharge equation	1.9; 1.13
Head losses across a propeller	meter
	9.7.3
Head losses in the intakes	2.9
Head measurement	2.1
Head measurement, errors in	A2.5
Head measurement station	2.2
Head measurement station, lo	cation of
	2.2; 6.3.1
Head meters	2.12
Head-reading errors, reductio	n of
	8.3.1
H-flume	1.11; 7.5
High-water mark	2.7
Horizontal crest	. 1.9
Horizontal pipe, flow from	9.4
Hydraulic drop	1.8
Hydraulic jump 1.8; 2.3; 8	.2.3; 8.4.3
Hydraulic jump, sequent depti	h A4.2.1
Hydrostatic pressure distribut	ion
	1.4; Å1.5
Hydrostatic pressure in the m-	direction
-	1.5

I

Impact block type basin	A4.2.2
Inclined drops	A4.3
Instrument errors in measuren	nent
	A2.5
Instrument shelter	2.10
Intake pipes	2.6
Intermediate piers	4.2.1
Internal friction moment (reco	orders)
	2.9
Irrigation water, measuring of	volume
	9.6.1

J

Jet below the gate	8.4.2
Jet flow from the pipe	9.3.1

K

Kinetic energy	1.3; A1.3
----------------	-----------

L

Lag error in measurement	A 2.5
Level recorders	2.8; 2.9
Level recorders, housing of	2.10
Level recorders, protection a	gainst
freezing	2.11
Long-throated flumes	1.15.3; 7.1
Long-throated flumes, applied	cation of
	7.1.4

Μ

Manning equation	3.2.2
Mass forces	A1.2
Maximum stage gauge	2.7
Measurement error 3.2.10	; A2.2
Measurement of flow, accuracy of	•
	A2.1
Measurement of flow, propagation	n of .
errors	A2.4
Measuring device	2.1
Measuring structures,	
accuracy of	3.2.4
application of	3.3
calibration of	3.4.3
damage to	3.2.8
function of	3.2.1
selection of	3.4
Meter registration, factors affectir	ıg
	9.7.2
Metergate	8.6
flow through	8.6.1
installation of	8.6.3
Meyer-Peter/Müller bed-load fund	ction
	3.2.6
Minimum pressure at the weir cress	st
	6.7.1

Modular flow	1.8
errors in measurement of	A2.4
Modular limit	1.15.2; 3.2.2
calculation of	1.15.3
Modular limit of flume, est	imate of
	7.1.3
Montana flume	7.41
Motion, equation of	1.3
Movable gate	6.5.1
Movable gauge	6.5.1
Movable partition board	9.1.1

N

Nappe, curvature of	1.14
underpressure beneath	1.14
Near constant orifice discharge	e 8.7.1
Negative pressure	6.6.1
of the crest	6.7.1
Net impressed force	A1.2
Newton's law of motion	1.4; A1.2
Neyrpic module	8.7
Neyrpic weir profile	9.1.2
Normal depth	A3.2.1
Normal plane	1.1
Normal pressure	A1.2

0

Oblique weirs	A3.3
Orifice	1.12;8
required fall of energy head	3.2.2
Orifice box	8.2.1
Orifice flow, head discharge eq	uations
	8.1.2
Orifice plates	8.1.1
Osculating plane	1.1;A1.2
Outlet box, influence on meter	
accuracy	9.7.2

P

Parshall flume	1.11; 7.4
modular flow in	3.2.2
Pathline under steady flo	w conditions
	A1.3

397

ς

Pendulum actuated revolution counter	
	9.6.1
Permeability of filter material	A4.4.2
Piezometer tap	8.6.1
Piezometric gradient	1.4; A1.4
Piezometric head	1.3; A1.3
measurement	2.2
Pipes, see also Horizontal pipe,	Vertical
pipe	
Pipes, use of	9.2.1
spiral flow in	9.7.2
Point binomial distribution of	errors
	A2.4
Potential energy, conversion in	nto
kinetic energy	1.15.3
Pressure detection	2.6
Pressure energy	1.3; A1.3
Pressure head	1.3; A1.3
Propeller meters	9.7
Propeller rotation	9.7.2
Proportional divisor	9.1.1
Proportional weir	5.5
Purdue trajectory method	9.4.2

. - [.] .

R

Radial gate	8.4
Random errors in measuremen	nt A2.2
Recorders, see Level recorders	
Recording gauge	2.8
Rectangular gate leaf	8.6.2
Rectangular sharp-edged orific	ce 8.2
Registration error, see also Acc	uracy,
Measurement error, Meter	
registration	
Registration error	2.9; 9.7.2
Regulating device	2.1
Regulating structures, see also	
Measuring structures	
Regulating structures, selection	n 3.4
Relative error in measurement	A2.3
Relative standard deviation	A2.4
Resonance of the overfalling je	et 1.13
Revolution counters	9.6.1
Ripple factor	3.2.6
Riprap protection	A4.4
Romijn movable weir	4.2

S	
SAF basin	44.3.2
Sediment discharge capability	3.2.6
Selection of structures	3.1
Sensitivity of structure	3.2.4
Sensitivity of weir	1.13.7
Separation pocket 6.3.1	: 6.4.1
Separation bubble 1.10	: 4.4.1
Sequent depth rating	44.3.1
Sharp-crested side weirs A	A3.2.4
Sharp-crested weirs 1.10; 1	1.13; 5
Short-crested weirs	1.10;6
Side weir	A3.2
Side weir capacity, evaluation	A3.2.4
Sighting rod readings	9.3.2
Siphons	9.2.1
Sluice gate 8.2.1; 8.2.2	; 9.6.1
Specific energy	1.8
Spillway face, inclination of	6.6.1
Spillways 6.6.1	; 6.7.1
Spiral flow in pipes	9.7.2
Spurious errors in measurement	A2.2
Staff gauge 2	.5; 2.6
Stage-discharge equations (empiri	cal)
	1.11
Stage-discharge relationship	6.5.2
Standard deviation	A2.4
Standing wave	1.8
Standing wave flume	1.11
Standing wave weir, movable	6.5
Stilling basin	A4
Stilling well	· 2.6
errors in measurement	A2.5
Stone size in riprap mixture A	4.4.1
Straight drop structures	A4.2
Stream tube	1.2
Streamline curvature, influence of	1.10
Streamlines	1.2
Structures see Measuring structure	5
Subcritical flow	1.8
Submerged calibrated valve gate	8.6.1
Submerged orifice 1.12;	; 8.1.1
Submergence ratio 1.15.1; 1.15	.2; 2.4
Suction lift head meter	2.12
Supercritical flow	1.8

Superposition of head-	-discharge
equations	1.9.5; 1.13.4
Suspended-load	3.2.6
Sutro weir	5.5.1
Systematic error	2.6; 2.9; A2.2
Systematic percentage	error in
measurement	A 2.8

Т

Tailwater channel	2.1; 2.4
Tailwater level	2.1; 2.4
Tailwater measurement	2.4
Tainter gate	8.4
Tape index pointer	2.8
Thomson weir	5.2.1
Throat of the flume	1.11
Throatless flumes	7.2; 7.3
Torricelli's equation	1.13
Total energy head	1.3; A1.3
Total energy head of open chan	nnel 1.6
Total-load equation	3.2.6
Trajectory method	9.4.2
Transition reach	1.15.2
Transport parameter	3.2.6
Trash rack	3.2.7
Triangular broad-crested weir	4.3
Triangular profile flat-V weir	6.4
Triangular profile weir	6.3
Truncated Parshall flume	7.4.1
Truncated transition	1.15.3
Truncation, point of	6.3.1
Truncation of downstream exp	oansion
	. 7.2.2
Tube-float differential head me	eter 2.12
Turnout gate	8.3.1

U

Ę,

Undershot gates	3.2.2
Undershot water wheel	9.6.1
Undular jump	1.8
Uniform distribution of errors	A2.4
Upstream channel, minimum wa	ater
level in	3.2.9
Upstream energy head over the	crest
	1.9; 2.1

Upstream spillway face, ind	clination of
•	6.6.1
Upstream water level (over	the crest)
	1.9.1
U.S. ARS basin	A4.2.2

. .

V

Valve gate	8.6.1
Velocity above the weir crest	1.10
Velocity coefficient	1.6; 1.9.1
Velocity distribution	1.4; 1.6
Velocity head	1.3; A1.3
Velocity profile, influence on	
registration	9.7.2
Vena contracta	1.12; 5.5.2
Ventilation pipe	8.3.1
Venturi flume	7
Vertical pipe, flow from	9.3
V-notch sharp-crested weir	5.2
V-notch weir sill	6.2
Volume of irrigation water, r	neasuring
	9.6.1

W

Wash-load	3.2.6
Water level, registration erro	or 2.9
Water surface along side wei	r A3.2.2
Water wheel	9.6.1
Weir, see also Broad-crested	weir,
Short-crested weir, Sharp-o	crested
weir	
Weir, aeration demand	1.14
required fall of energy hear	d 3.2.2
sensitivity	1.13.7
Weir block, truncation of	6.3.1
permissible truncation	6.4.1
Weir constant	1.13.7
Weir face, inclination of	6.6.1
Weir notch angle	4.3.1; 4.3.4
WES-spillway	1.10; 6.6

Ζ

Zero-setting

2.1

Currently available ILRI publications

No.	Publications	Author	ISBN No.
11	Reclamation of salt-affected soils in Iraq.	P. J. Dieleman (ed.)	_
14	Irrigation requirements for double cropping of low-	G. A. W. van de Goor	90 70260 840
15	Planning of service centres in rural areas of developing	D. B. W. M. van Dusseldorp	~ .
16	countries Drainage principes and applications (in 4 volumes)	-	90 70260 123,
_	ſ		-131, -62 X and $-63 8$
16 ^{\$}	Principos y aplicationes del drenaje (en 4 volúmenes).		~ ·
17	Land evaluation for rural purposes.	R. Brinkman and A. J. Smyth	90 70260 859
19	On irrigation efficiencies.	M. G. Bos and J. Nugteren	90 70260 875
20	Discharge measurements structures. (3rd edition)	M. G. Bos (ed.)	90 70754 15 0
21	Optimum use of water resources.	N. A. de Ridder and A. Erez	-
23	Land evaluation for agricultural development.	K. J. Beek	-
24	Drainage and reclamation of salt-affected soils.	J. Martinez Beltrán	- .
25	Proceedings of the International Drainage Work-	J. Wesseling (ed.)	90 70260 549
26	Framework for regional planning in developing coun-	J. M. van Staveren and	90 70260 832
27	thes	D. B. W. M. van Dusseldorp	00 702/0 /00
21	Land reclamation and water management.		90 70260 689
28	Proceedings of the workshop on Land Evaluation for	P. Laban (ed.)	90 70260 68 9
	Forestry		
29	Numerical modelling of groundwater basins: A user-	J. Boonstra and	90 70260 697
	oriented manual	N. A. de Ridder	· · · · · · ·
30	Proceedings of the Symposium on Peat Lands Below	H. de Bakker and	90 70260 700
	Sea Level.	M. W. van den Berg	·
31	Proceedings of the Bangkok Symposium an Acid Sul-	H. Dost and	90 70260 719
	phate Soils.	N. Breeman (eds.)	•
32	Monitoring and evaluation of agricultural change.	Josette Murphy and	90 70260 743
		Leendert H. Sprey	
33	Introduction to farm surveys.	Josette Murphy and	90 70260 735
	· · · · · · · · · · · · · · · · · · ·	Leendert H. Sprey	
34	Evaluation permanente du développement agricole.	Josette Murphy and	90 70260 891
,		Leendert H. Sprey	• .
35	Introduction aux enquêtes agricoles en Afrique.	Josette Murphy and	90 70260 956
		Leendert H. Sprey	a second second
36	Proceedings of the International Workshop on Land	W. Siderius (ed.)	90 70260 948
27	Evaluation for Extensive Grazing (LEEG).	L Deume D A C Deste	00 72060 072
31	solute movement in heavy clay soils'	J. Bouma, P. A. C. Raats (ed.)	90 /2000 972
38	Aforadores de caudal para canales abiertos	M. G. Bos, J. A. Replogle	90 70260 921
50	nondores de caudar para canalos abiertos.	and A. I. Clemmens	, , , , , , , , , , , , , , , , , , , ,
39	Acid Sulphate Soils: A baseline for research and devel-	D. Dent	90 70260 980
40	Upinent.	W. Sidarius (ad.)	00 70360 000
40	tion in sloping areas.	w. Siderius (ed.)	30 /0200 999
41	Research on water management of rice fields in the Nile Delta, Egypt.	S. EL. Guindy & I. A. Risseeuw;	90 70754 08 8

42	Proceedings, Symposium 25th International	J. Vos (ed.)	90 70754 11 8
43	BASCAD: A Mathematical Model for Level Basin	J. Boonstra &	90 70754 12 6
	Irrigation	M. Jurriëns	
44	Selected Papers of the Dakar Symposium on Acid	H. Dost (ed.)	90 70754 13 4
	Sulphate Soils	-	
45	Health and Irrigation (vol. II)	J. M. V. Oomen, J. de Wolf and W. R. Jobin	90 70754 17 7

No.	Bulletins	Author	ISBN No.
1	The auger hole method.	W. F. van Beers	90 70260 816
4	On the calcium carbonate content of young marine sediments.	B. Verhoeven	.
6	Mud transport studies in coastal water from the Western Scheldt to the Danish frontier.	A. J. de Groot	
8	Some nomographs for the calculation of drain spac-	W. F. J. van Beers	- ·
9	The Managil South-Western Extension: An extension to the Gezira Scheme.	D. J. Shaw	-
10	A viscous fluid model for demonstration of ground- water flow to parallel drains.	F. Homma	90 70260 824
11	Analysis and evaluation of pumping test data.	G. P. Kruseman and N. A. de Ridder	90 70260 808
11 ^s	Análisis y evaluación de los datos de ensayos por bombeo	G. P. Kruseman and N. A. de Ridder	-
11 ^F	Interprétation et discussion des pompages d'essai.	G. P. Kruseman and N. A. de Ridder	-
12	Gypsifereous Soils.	J. G. van Alphen and F. de los Rios Romero	-
13	Groundwater hydraulics of extensive aquifers.	J. H. Edelman	90 70260 794

No. Bibliographies

.1	Agricultural extension in developing countries.	C. A. de Vries	
8	Bibliography on cotton irrigation.	C. J. Brouwer and	-
	•	L. F. Abell	
9	Annotated bibliography on surface irrigation meth- ods.	S. Raadsma, G. Schrale	-
10	Soil Survey interpretation.	R. H. Brook	-
13	Abstract journals on irrigation, drainage and water resources engineering.	L. F. Abell	-
18	Drainage: An annotated guide to books and journals.	G. Naber	90 70260 93 X

Other publications

۰.

Papers International Symposium.	90 70260 75 1
Polders of the World (3 volumes).	76X and 778
Final Report Symposium Polders of the World.	-
Proceedings Symposium Lowland Development in Indonesia.	90 70754 07 X